11 research outputs found

    Local and regional heterogeneity underlying hippocampal modulation of cognition and mood.

    Get PDF
    While the hippocampus has been classically studied for its role in learning and memory, there is significant support for a role of the HPC in regulating emotional behavior. Emerging research suggests these functions may be segregated along the dorsoventral axis of the HPC. In addition to this regional heterogeneity, within the HPC, the dentate gyrus is one of two areas in the adult brain where stem cells continuously give rise to new neurons. This process can influence and be modulated by the emotional state of the animal, suggesting that adult neurogenesis within the DG may contribute to psychiatric disorders and cognitive abilities. Yet, the exact mechanism by which these newborn neurons influence behavior remains unknown. Here, we will examine the contribution of hippocampal neurogenesis to the output of the HPC, and suggest that the role of neurogenesis may vary along the DV axis. Next, we will review literature indicating that anatomical connectivity varies along the DV axis of the HPC, and that this underlies the functional segregation along this axis. This analysis will allow us to synthesize novel hypotheses for the differential contribution of the HPC to cognition and mood

    GluN2B-Containg NMDA Receptors on Adult-Born Granule Cells Contribute to the Antidepressant Action of Fluoxetine

    Get PDF
    Ablation of adult neurogenesis in mice has revealed that young adult-born granule cells (abGCs) are required for some of the behavioral responses to antidepressants (ADs), yet the mechanism by which abGCs contribute to AD action remains unknown. During their maturation process, these immature neurons exhibit unique properties that could underlie their ability to influence behavioral output. In particular, abGCs in the DG exhibit a period of heightened plasticity 4-6 weeks after birth that is mediated by GluN2B-expressing NMDA receptors. The functional contribution of this critical window to AD responsiveness is unclear. Here, we determined the behavioral and neurogenic responses to the AD fluoxetine (FLX) in mice lacking GluN2B-containing NMDA receptors in abGCs. We found that these mice exhibited an attenuated response to FLX in a neurogenesis-dependent behavioral assay of FLX action, while neurogenesis-independent behaviors were unaffected by GluN2B deletion. In addition, deletion of GluN2B attenuated FLX-induced increases in dendritic complexity of abGCs suggesting that the blunted behavioral efficacy of FLX may be caused by impaired differentiation of young abGCs
    corecore